Maize Gametophyte Project - validated Ds-GFP insertions


64 of 83 putative transposable element insertions obtained from the Dooner/Du Ds-GFP (also called dsg or tdsg) collection at the Maize Genetics Cooperation Stock Center (acdsinsertions.org) were verified to have Ds-GFP insertions at the predicted sites by PCR (Table A). Because these insertions were selected to be located in coding sequence, they represent putative knockout alleles for the mutated gene. The predicted insertion site was not found in 19 of 83 Ds-GFP elements, using primers designed to amplify a Ds insertion at that location (Table B). However, extensive PCR optimization was not pursued with this material, so although these insertions are currently designated as 'non-verified', we do not conclude that the acdsinsertions.org prediction is incorrect.


All lines were also tested for the presence of only a single Ds-GFP insertion by outcrossing and identifying co-segregating single elements in progeny kernels based on the fluorescent GFP endosperm phenotype (Fig. 1) and a diagnostic PCR band. As originally acquired from the Stock Center, a few lines appeared to harbor more than a single Ds-GFP element, based on outcross segregation patterns. From these lines, only progeny segregating for a single insertion were tested further. Several lines also harbored the wx1-m7::Ac element (by PCR), which was used in the initial mobilization of the Ds-GFP element (Li et al. 2013).


Based on the GFP endosperm phenotype, all 83 single insertions segregate 1:1 when the insertion line is used as the female in an outcross; however, 9 of the 64 verified and 1 of the 19 non-verified insertion lines are associated with a male-specific transmission defect. These are likely due to a causal mutation from the Ds-GFP insertion. Transmission rates through the male, as well as primer sequences used for PCR genotyping, are available in the tables below, reproducing select data from Warman et al. (PLoS Genetics 2020) and Warman et al. (bioRxiv 2020).


Contact: John Fowler


References:
High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements. Warman C, Panda K, Vejlupkova Z, Hokin S, Unger-Wallace E, Cole RA, Chettoor AM, Jiang D, Vollbrecht E, Evans MMS, Slotkin RK, Fowler JE. PLoS Genet. 2020 Apr 1;16(4):e1008462. https://doi.org/10.1371/journal.pgen.1008462
MaizeGDB reference

A cost-effective maize ear phenotyping platform enables rapid categorization and quantification of kernels. Warman C, Sullivan CM, Preece J, Buchanan ME, Vejlupkova Z, Jaiswal P, Fowler JE. bioRxiv 2020 https://www.biorxiv.org/content/10.1101/2020.07.12.199000v1

Gene tagging with engineered Ds elements in maize. Li, Y., G. Segal, Q. Wang, and H. K. Dooner. 2013 Methods in Molecular Biology: Plant Transposable Elements, 1057: 83-99. T. Peterson, ed. Springer Science & Business Media, NY. https://doi.org/10.1007/978-1-62703-568-2_6
Download pdf file



Figure 1. 1:1 segregation of the tdsgR99B02 Ds-GFP element on a maize ear, resulting from an outcross when the male parent was heterozygous for the element. The element carries a GFP coding sequence driven by the a-zein promoter (Li et al. 2013), generating a fluorescent green endosperm phenotype that can be easily distinguished from wild-type, non-fluorescent seeds (appearing purple due to the orange filter used for imaging).



Table A. Validated Ds-GFP insertions.
DsGFP allele Male transmission rate (** if significantly different from 50%)  V4 Gene  v3 Gene Expression class (based on associated gene) Primer 1 Primer 2
tdsgR63F09 49.4% Zm00001d002266 GRMZM2G000052 seedling_only GTTGACGGGATGTAGGAGGTGC AGCTGAGAAAAGGCGAACTGGG
tdsgR80E09 49.1% Zm00001d004768 GRMZM2G111143 seedling_only TGCCCTGGCAAAGTAGTGCACC GCAGCTGCAGTTGTACACAGTACAGAG
tdsgR83H05 49.2% Zm00001d005036 GRMZM2G007283 seedling_only ACAGGAAGGGAAGGGGAGGAAG ATAGTGGGGAGGAGAAGAGGGC
tdsgR44E07 47.9% Zm00001d005798 GRMZM2G148333 seedling_only ATGGGCAAGGCTGTTCAGAGTG GGCTGCTCTCGACGACATAAGG
tdsgR65E02 48.0% Zm00001d007228 GRMZM2G129209 seedling_only GTCATCCACCATCTCTTCCCGC GCAGAGAGATCTAAGGCGCAGG
tdsgR46C04 51.3% Zm00001d013295 GRMZM2G051403 seedling_only CTCCACCATGTCCTGACCGAAG TAAGGCGCCAACCCAATCTACG
tdsgR91G06 50.8% Zm00001d017240 GRMZM2G148387 seedling_only TGGCTGTGACGGTGAGTTGTTC TTGAGCTTGCAGTCCAGACGAC
tdsgR106F04 49.4% Zm00001d022274 AC217975.3_FG001 seedling_only CAGACAGAACGGGCATCTTCACA GGACTCATTCCGGGACATCAGATACT
tdsgR76E07 49.8% Zm00001d029047 GRMZM2G100288 seedling_only TCCTCAGGCTCCACTTCTACCC TTGTGGCTTCGAGTCGGGATTG
tdsgR106E07 48.6% Zm00001d031325 GRMZM2G080724 seedling_only GCCACGCCTCCTCCTCATTATC CCACTCTCCAGAAACCACCACG
tdsgR21D01 nd Zm00001d034991 GRMZM2G004396 seedling_only TGTACCACCACAGCAATCAGGC TCATCAGGGGGAAGCTCGTCAC
tdsgR59F11 nd Zm00001d035737 GRMZM2G018786 seedling_only GAGTGCGCTGTGGCGAAGAA TGACTTCATCTGCTGCGGCC
tdsgR53F11 48.9% Zm00001d035925 GRMZM2G127798 seedling_only TCCAATGTGGACGCACATCGAG TGTACGCGTCCAAGATCTGCAG
tdsgR52B09 48.5% Zm00001d036283 GRMZM2G342243 seedling_only CTTGACAGAAACGCCAAGACCG CAGAGGCACAGGCACAGAACTC
tdsgR12H07 49.4% Zm00001d051110 GRMZM2G044882 seedling_only ACCCATGCTTTGCCTTCCCTTC AGTTCATGCGGTAGGTGTTGGC
tdsgR65A10 52.3% Zm00001d051194 GRMZM2G374302 seedling_only AGGCACAGACCCTACTTCATATCG GAGCACGATGATGGGGTTCAGG
tdsgR82A03 33.4% ** Zm00001d005781 GRMZM2G036832 sperm_cell_high CGAACTGAGGTGGTCTGCAGAG ACTTCCTGTACCATAACCTGCCC
tdsgR84A12 23.1% ** Zm00001d005781 GRMZM2G036832 sperm_cell_high CTGAAGTAGCCAGGCATGTCGG CATCCACGGTTCAAAACTGCGAC
tdsgR60D10 51.5% Zm00001d006218 GRMZM2G365613 sperm_cell_high CACTCATCACTGTACCTGCCCG TAAGCACCCATCATCGTCGCTG
tdsgR87A03 50.0% Zm00001d012128 GRMZM2G100318 sperm_cell_high CCCTTGCATGCTCTTGTTCCAAG TCAGTGCCGGTGATAAGGACTTC
tdsgR83A02 49.2% Zm00001d012575 AC194405.3_FG021 sperm_cell_high TGCATGTCCTCACTAATCGCTCC CGCATTGTCCAACAACTCTGCC
tdsgR96B12 nd Zm00001d015457 GRMZM2G417525 sperm_cell_high TTCGAGATTTTGCAGCGAACGC TTCACTGCAACCAGGGCTCATC
tdsgR35A03 51.1% Zm00001d021974 GRMZM2G172726 sperm_cell_high TATGTCACCCAAGCGCACCTAG TTTGCTCGTTCTCACCGGTCAG
tdsgR31B01 48.0% Zm00001d025834 GRMZM2G160069 sperm_cell_high AGGATGTCTGTGCCCCATATGC TGCGCCATTTCTTGTTGCTGTC
tdsgR91F11 49.2% Zm00001d034788 GRMZM2G114899 sperm_cell_high TGCACTCGTTAACCACCTCACG GGTAATTCCCTCCGACAGCAGC
tdsgR26G07 51.0% Zm00001d042810 GRMZM2G007659 sperm_cell_high GATCATGCAGCACAACACGGTC CTGCTCGGTCTCACAGGTATGC
tdsgR53C03 51.0% Zm00001d043076 GRMZM2G038252 sperm_cell_high AAGCCACAATGCAGGTCCCAAG TGCCACTTTCCCCATTCCTGTC
tdsgR106G12 49.3% Zm00001d044109 GRMZM2G099382 sperm_cell_high GGCGAGAAACTGATGGACTGGG TGGGCTGTGACTGAGAAGTTCC
tdsgR37A04 51.3% Zm00001d048434 GRMZM2G352898 sperm_cell_high TGCAACGGCAATGCAGTAGTATACC CAAGATATTGATACAACGCGCTGCT
tdsgR81G05 51.3% Zm00001d002258 GRMZM5G876898 vegetative_cell_high CCCCCTTCAAACACAGCACAAC ATCCCGATCTCACCGTCTCCAC
tdsgR49F11 43.9% ** Zm00001d003431 GRMZM2G012328 vegetative_cell_high ATAGCGACTCCCAACGAACACG TGCTGGATGGTCTTGAACTGGC
tdsgR83B04 48.7% Zm00001d003947 GRMZM2G142863 vegetative_cell_high TCGCTCTTGTCTTCCCAGCAAC CTCACCGACAGCTTCCTCGAC
tdsgR52E07 47.1% Zm00001d007845 GRMZM5G827174 vegetative_cell_high CATGTTCACGTGCAGGTTCTCC CTTCGCTCCACGCAAAAGGAAC
tdsgR34C11 48.8% Zm00001d012382 GRMZM2G045278 vegetative_cell_high TCGACTGCCTTGCCTTGTGTAC CGGTTTGCGTATAGGTTAGCTGC
tdsgR107C12 48.3% Zm00001d012382 GRMZM2G045278 vegetative_cell_high ATCTGATGAATCGACGGGCAGC GGCCTTAGGACGGGAAATCAGC
tdsgR67C09 44.1% ** Zm00001d014731 GRMZM2G135570 vegetative_cell_high CTGTCCATGGCTAACTACGGGC TACTTAGGGCGTTTGGCAGAGC
tdsgR92F08 45.1% ** Zm00001d014782 GRMZM2G153987 vegetative_cell_high ATTAATCGAGCAGAGCAGGCCG GCAGGTTCTCTTGTCCAGGGTG
tdsgR99B02 49.3% Zm00001d015242 GRMZM2G102912 vegetative_cell_high CACGCTGATGGAAGAGGAGGTG AGGCGAGTGATTTCTCCGATGC
tdsgR96C12 29.5% ** Zm00001d015901 GRMZM2G082517 vegetative_cell_high CCTTACCCACCACCACTGCTTC CGGTTTGTGTCTTCGAGGAGGG
tdsgR41F01 49.6% Zm00001d017840 GRMZM2G056252 vegetative_cell_high CACGGATGCCAACCACACAAAC TACGTGTACAACAACCCGGTCG
tdsgR98H09 47.5% Zm00001d017958 GRMZM5G872068 vegetative_cell_high AGCACAGGTTACCGCATCAGTG ACCCAGTGTACCAAACCCAAGG
tdsgR33F03 43.9% ** Zm00001d022250 GRMZM2G039583 vegetative_cell_high GTCTCCTGGTGGTAATCTGCGG GAAATGGCCACGGCAGATTGC
tdsgR31H05 50.2% Zm00001d025437 GRMZM2G136508 vegetative_cell_high TGCCTCTGTGTCGCAATTCCAG AGGAGAAATCAGCACAGCAGCC
tdsgR23D05 51.1% Zm00001d026303 GRMZM2G126858 vegetative_cell_high GCGCCCATCCCACCCAAATG ACTATTTCCCGAGTGCAGCACC
tdsgR24D03 49.5% Zm00001d026445 GRMZM2G120136 vegetative_cell_high AATGGCCAGAGTTCAGCAGGTG TTGGTGACTGAATCCTGCTGGC
tdsgR02D02 49.6% Zm00001d026490 GRMZM2G006894 vegetative_cell_high AGAGTCCCTCCCGGTTACCAAG AAGACCACGCTCGGCATACTTG
tdsgR35A08 48.2% Zm00001d027590 GRMZM2G172751 vegetative_cell_high AGCCTCTCCTCGATCCAAGTCC GTTGTGCTCGACGAGGTGGATG
tdsgR72D11 49.8% Zm00001d027856 GRMZM2G035243 vegetative_cell_high TCGGCAACATACTGAGCTCTGC CTGACAATCAGCCGATGTCCAG
tdsgR04A02 43.8% ** Zm00001d028437 GRMZM2G359879 vegetative_cell_high CTTCAGCTCGAGGTCACTGCAC GGTGTGGTATGAGTTCCTGGCC
tdsgR27E01 48.3% Zm00001d028820 GRMZM2G016734 vegetative_cell_high ACCCCAGCTTACACAATCGACC TGGTGCAGTTCTGTCGGACAAG
tdsgR77F09 49.2% Zm00001d032279 GRMZM2G142249 vegetative_cell_high TGATGCTGCCTTCGCTACGAAC TGGCAAGGCTTCTGATTGGAGG
tdsgR04G10 49.6% Zm00001d032310 GRMZM2G114093 vegetative_cell_high ACAGCCAGTGTAGAATCATGTTAGC TGTCATCTTCAGACGCCAAGCC
tdsgR01G01 48.4% Zm00001d032950 GRMZM2G124434 vegetative_cell_high TGAGATCGTGCTGGGCTTTGAG TCGTATCGTTTGGACCATGCCC
tdsgR103E04 49.3% Zm00001d034799 GRMZM5G878153 vegetative_cell_high GCGTACCCTTCTCGTCCTGCAT GGAAACAATTACCCTGCTCGTCCTG
tdsgR32B05 50.3% Zm00001d034839 GRMZM2G134054 vegetative_cell_high CCGTTGGTCAGGTACAGGTTGG AAATTCCCGCAACTCCCGTACC
tdsgR45E04 50.0% Zm00001d034839 GRMZM2G134054 vegetative_cell_high CCGTTGGTCAGGTACAGGTTGG GCTCCTCCGTCCGATCCATACG
tdsgR69C04 48.3% Zm00001d036330 GRMZM2G307402 vegetative_cell_high TGATCGATCGGTGAAGCAGCAG AGGAGGAGGAGGAGGAGGAGAC
tdsgR101B03 50.1% Zm00001d037061 GRMZM2G012263 vegetative_cell_high CATCGCCAAGTCCACCGTAGAG TCTGCAGGAACCATGGAAGCTG
tdsgR81E02 50.4% Zm00001d037061 GRMZM2G012263 vegetative_cell_high CTACAACTTCTCCCAGGACGCC GGCAACCGGATGTGCAGATTTG
tdsgR102H01 45.5% ** Zm00001d037695 GRMZM2G350802 vegetative_cell_high AGCCCCGTGTAGTTCCCTTTTTC TTGCTTGCTAGGCTGGGTTCTC
tdsgR88B08 50.5% Zm00001d041514 GRMZM2G018372 vegetative_cell_high TGCCCATCTCCTTGCTCGTTTC CAAGGAGACAGCACTGGACTGC
tdsgR92A10 52.4% Zm00001d046483 GRMZM2G095206 vegetative_cell_high ACTGTGAAGCCAAACCCTCAGC CTGTTCTGCCTTCTCCGTCCG
tdsgR39B06 51.0% Zm00001d048384 GRMZM2G089699 vegetative_cell_high CCCACCTCTATCCTTGTGTCTTGG TGTCGGCTTGCCATACCATGTC
tdsgR08A07 47.3% Zm00001d048785 GRMZM5G845021 vegetative_cell_high GATTCACCTTGACGCACGCAAC CTTCCATACCACGCCTACTCGC


Table B. Unverified Ds-GFP insertions.
DsGFP allele Male transmission rate (** if significantly different from 50%)  V4 Gene  v3 Gene Expression class (based on associated gene) Primer 1 Primer 2
tdsgR48D04 nd Zm00001d032618 GRMZM2G153208 seedling_only AACGCATTGAGCCATTGACGC GAGACAACGCACGTGTGGCAGT
tdsgR63C12 nd Zm00001d044212 GRMZM2G176903 seedling_only AAGAGCCGATGTGACAGAGCTG GGCCTCTGACAAGCCGATGTAC
tdsgR98H08 nd Zm00001d013493 GRMZM2G102760 seedling_only ATGCTTCGAAGGAACTCGCTGG ACCGCATCCACACACTCATCAC
tdsgR21D07 nd Zm00001d005694 GRMZM2G119906 seedling_only AACCACCGATGACCCCCAAAAG TGTCACTTTGTCAGGGCTTCGG
tdsgR06D07 nd Zm00001d002570 GRMZM2G038851 sperm_cell_high CTGTACCTCCTCGAGCGTTCTG CACAATGGTAAGCGCCTGACTG
tdsgR89B08 37.2% ** Zm00001d002824 GRMZM2G062554 sperm_cell_high GCTTGAGAGGGGTTAGAGCTCG GGCCTACTTGCGATCACCCATC
tdsgR105B06 nd Zm00001d044412 GRMZM2G072080 sperm_cell_high AATGCCTTGCTCACGTATGCTG ACGAGGTGCTGTGATATTGCTGG
tdsgR82B10 nd Zm00001d034788 GRMZM2G114899 sperm_cell_high TGCACTCGTTAACCACCTCACG GGTAATTCCCTCCGACAGCAGC
tdsgR29A11 49.1% Zm00001d012674 GRMZM2G124365 sperm_cell_high CCAAGTTTGCATGCGTCGATCC ACCCAGCCAAAGAAAGTGACCC
tdsgR75H08 nd Zm00001d044290 GRMZM2G130375 sperm_cell_high ATGTCATGCTCGCTCAGGTACC GTCTCATCTGCACCCTCACCTG
tdsgR67H12 48.7% Zm00001d031678 GRMZM2G033828 vegetative_cell_high TCTTTCTTCTTTGGGCTGGCGC AAGTCAGGTCTCCCAAAAGGGC
tdsgR97C08 nd Zm00001d009775 GRMZM2G050364 vegetative_cell_high ATGCATTTCAGTGTCTCCCCGC GATGTCCGTCTCCATGGTGCC
tdsgR85A08 50.3% Zm00001d005053 GRMZM2G051491 vegetative_cell_high CCTCCAGCACCATGTCCGATTAG CAGAGAGAGGCCAGACTGATGG
tdsgR88H09 nd Zm00001d044192 GRMZM2G057733 vegetative_cell_high GCTGTTCTTAGACGCACGCAAC GGACTTGGACGAGCTTAGCGAG
tdsgR90C03 nd Zm00001d016444 GRMZM2G098278 vegetative_cell_high GCTTCATCCTCAGCCTCCTTCG ATCACTCAACACTCGCACGACC
tdsgR31B05 nd Zm00001d014731 GRMZM2G135570 vegetative_cell_high TGTACACACATCTACGCAGGCC GACGTCCATCCCTTTCACCACC
tdsgR02A05 47.4% Zm00001d042353 GRMZM2G140107 vegetative_cell_high GTCCATCGACGGTGAGAAGAGC TGAGTGCCTGTGACCTTGATGC
tdsgR72F03 nd Zm00001d037308 GRMZM2G168190 vegetative_cell_high TTGAGTAGTACGAGGCTCCGGG AAGGTCGGGTAGAGGGTAGGTG
tdsgR108A02 47.1% Zm00001d039693 GRMZM2G319167 vegetative_cell_high GAGAAGCCAACGGAGCCTTAGG ACGGCCTCAGAAACTTGACCAC

Validation of Ds-GFP insertion sites – Methods (from Warman et al, 2020)


A FASTA file containing 2 kb of genomic sequence surrounding each Ds-GFP insertion site was used as input to a primer3-based tool to generate a pair of specific primers to genotype individual plants from each line (https://vollbrechtlab.gdcb.iastate.edu/tools/primer-server/). The primers used for each Ds-GFP line are listed in S6 Table from Warman et al, and are shown below.

To genotype the plants, two 7 mm discs of leaf tissue were collected from each plant using a modified paper punch. The samples were collected in 1.2 ml tubes that fit within a labeled 96 well plate/rack (https://vollbrechtlab.gdcb.iastate.edu/tools/tissue-sample-plate-mapper/) (Phenix Research Products, Candler, NC; M845 and M845BR or equivalent). Genomic DNA was isolated from the leaf punches with the following modifications. An additional centrifugation (3,000 g for 10 min.) was added to clear the leaf extracts prior to loading onto a 96-well glass fiber filter plate (Pall, 8032). DNA was eluted from filter plates in 125 μL water, and 2 μL was used as template for PCR. Amplification followed standard PCR conditions using GoTaq Green Master Mix (Promega) with 4% DMSO (v/v) and amplicons were resolved using agarose gel electrophoresis. Lines were genotyped using the pair of gene-specific primers, designed to amplify flanking sequence at the predicted insertion site, plus one Ds-specific primer (JSR01 GTTCGAAATCGATCGGGATA or JGP3 ACCCGACCGGATCGTATCGG). All lines were also screened by PCR for the presence of wx1-m7::Ac using primers for wx1 (CACAGCACGTTGCGGATTTC) and Ac (CCGGATCGTATCGGTTTTCG). Followup PCR to test for co-segregation of GFP fluorescence with the presence of the insertion used the appropriate set of three PCR primers (two gene-specific and one Ds-specific) and DNA prepared either from endosperm or seedling leaves.

Heterozygous lines with PCR-validated Ds-GFP insertion alleles were planted in the Botany & Plant Pathology Field Lab (Oregon State University, Corvallis, OR). All insertions were in coding sequence (CDS) sites. Heterozygous Ds-GFP plants were outcrossed to tester plants (c1 wx1/c1 wx1 or c1/c1 genetic background) through both the female and the male, with male pollinations made with a heavy pollen load on extended silks (silks that had been allowed to grow for at least two days following cutback). Following harvest, resulting ears were imaged using a custom rotational scanner in the presence of a blue light source and orange filter for GFP seed illumination. Briefly, videos were captured of rotating ears, which were then processed to generate flat cylindrical projections covering the surface of the ear. Seeds were manually counted using the Cell Counter plugin of the Fiji distribution of ImageJ.


This work was funded by National Science Foundation grants IOS-1340050 and MCB-1832186